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Abstract.  Those who cannot use computers are severely disenfranchised by society’s present 
and future reliance on digital technology.  Persons with disabilities comprise a significant portion 
of this disenfranchised group.  For persons with disabilities, one of the biggest obstacles to 
computer use is the input of text.  This thesis aims to be the basis for the development of a 
recommender system to aid users with a wide array of physical abilities in selecting the most 
applicable text input method for them.  We present a survey of text input devices both for people 
with disabilities and for people in the general population.  We then propose a framework for the 
development of a full scale recommender system for selecting the most appropriate text input 
method for a given user based on that user’s physical abilities. 
   
I. Introduction 

In these modern times, with the reliance on computers and mobile technologies 
continuing to rise, we as a general society do not tend to think critically about how we interact 
with computers.  Most computer users type on traditional keyboards and use traditional mice, 
while reading text and visually processing graphics on traditional monitors.  These input and 
output actions, however, are not possible for all members of our society.  Those with limited 
income may not be able to afford computers or have the time or resources to go to public 
computer stations [Honye, et. al., 2012].  Those with limited fine and/or gross motor skills may 
not be able to physically use a standard keyboard or mouse or read from a standard monitor.  We, 
as a society, must be aware of these differences in computer use and must work to create equal 
opportunities for these marginalized populations.   
 Our goal is that this thesis may lead to a greater understanding of computer use across 
users with a wide spectrum of physical abilities.  There are many input devices in existence for 
able bodied users and users with disabilities, and research in both of these areas is ongoing.  That 
being said, if people do not know a technology from which they could benefit exists, it is useless 
to them.  Furthermore, given a list of input methods or a web search of same, if people are not 
able to discern which input device best meets their particular needs, the list or web search is 
useless.  Additionally, for both populations in question, if the device or input method requires 
much overhead or setup or is prohibitively costly, it is also useless.  This thesis serves as a 
compilation and analysis of text input systems and proposes a framework for the development of 
a recommender system that can be implemented to assist in the selection of appropriate input 
devices for users with a wide array of fine and gross motor abilities. 

We begin by precisely defining the terms and techniques we will employ throughout this 
thesis.  Then, we present a survey of relevant research on text input methods.  Some of these 
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methods are targeted at the general population, while others were designed for use by people 
with disabilities.  We proceed by comparing select input methods to what we deem as the 
standard and most widespread input method - the traditional computer keyboard - identifying 
similarities and differences.  We then propose a framework for the development of a 
recommender system that will be able to suggest a ranked order of input devices based on a 
user’s specific abilities, and we will discuss how such a system may be implemented.  We hope 
that our proposed recommender system could help those with and without disabilities determine 
which input methods may be most beneficial for them.  A summary with ideas for further 
research concludes this thesis.  

  
II. Definitions of Terms 
 In order to proceed, we must provide a base of knowledge on which our analysis can sit.  
We define someone who has a physical disability as a person who has a motor condition that 
substantially inhibits one or more major life activities.  This definition is consistent with that of 
the Americans with Disabilities Act [Americans with Disabilities Act of 1990].  The cause of this 
condition could be neurological, possibly stemming from the aging process or a physical 
accident, or it could be from an amputation or other non-neurological impairment.  The 
disabilities referenced in further sections of this thesis include but are not limited to cerebral 
palsy, Parkinson’s Disease, Multiple Sclerosis, and spinal cord injuries that restrict motor control 
from the neck down.  For the purpose of this thesis, we are only concerned with physical 
disabilities which alter a person’s use of a traditional keyboard.   

We will be investigating various input methods that may or may not have been designed 
for people with disabilities but nonetheless are used by this population.  Some of these 
technologies are common knowledge to most computer users and people in academia, while 
others are more obscure.  What follows are definitions of the technologies discussed throughout 
this thesis:   
● Voice recognition: automatic interpretation of vocalized words or sounds into computer 

text or commands 
● Sign Language recognition: automatic interpretation of standard sign language via 

cameras and/or sensitized gloves 
● Eye gaze tracking: use of infrared or other technologies to detect where a user is looking 

on the screen, and thereby control a mouse, which could interact with an on-screen 
keyboard 

● Stylus input: detection of the movement or taps of a stylus across a sensitized surface and 
interpretation of those movements or taps 

● Handwriting recognition: automatic interpretation of stylus gestures aimed to simulate 
paper handwriting 

● Foot movement recognition: interpretation of foot movement to input text or control 
cursor or pointer positioning 

● Switch input: use of a single or limited number of switches to interact with software to 
input text and/or control user interfaces 

Temporal switch input is a form of switch input which relies on the user being able to, not only 
accurately hit one or more switches, but hit them at particular points in time.  The element of 
time provides for increased functionality with a limited number of switches.  Temporal switch 
input, as well as the other input methods described above will be referenced throughout this 
thesis.  
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III. The Survey: Prior and Ongoing Research 
The research area for efficient, effective, and easy to use text input is vast and has been 

active for decades.  Today, it is active, spanning a large spectrum from able bodied users, mobile 
applications, and input methods for people with limited mobility.  It is impossible to capture the 
entire research area in one section of this thesis, but this section contains a representative 
sampling of different projects that, in one way or another, try to speed up input, increase 
accuracy and/or enable those who have difficulty using traditional keyboards to be able to input 
text.   

We will discuss input methods that span this wide spectrum.  Some projects were 
specifically designed to benefit people with disabilities while others were designed to benefit the 
general population.  Many in the latter category were designed to be used in mobile computing 
contexts.  These include the Canesta Projection Keyboard and two types of stylus-based input.  
The projects designed specifically for people with disabilities include two types of on-screen 
keyboards, a physical keyboard that can adjust its settings dynamically based on analysis of user 
input, eye-gaze, voice and sign language recognition, and several methods of switch input.  It 
should be noted that there are many other forms of text entry, designed for both people with 
disabilities and for the general population, but this serves as a representative sampling. 

We begin with an analysis of how humans input text into a computer.  We will identify 
the traditional QWERTY keyboard as the standard form of text input and the typical computer 
user as a person who can type on a traditional keyboard at a competitive speed.  A standard 
unmodified keyboard remains the dominant means of text entry today [Joyce, B., Moxley, R., 
1990].  This is in large part due to the dominance of typewriters prior to the commercialization of 
desktop and laptop computers. For someone who has the standard set of abilities and challenges, 
using a traditional keyboard presents few obstacles. Someone who has never used a computer 
keyboard or typewriter may have challenges learning the location and function of the keys, but 
with practice, they can become proficient and learn to touch type if they desire. 

It is well known that people who use a standard keyboard for multiple hours a day are at 
risk of developing muscle weakness or other conditions resulting from extended use of the 
keyboard. Measures can be implemented to try and decrease the risk of injury. These measures 
include obtaining wrist and arm supports, positioning the keyboard so that it is at a more 
ergonomic location, and obtaining a variant to the standard keyboard that is designed to be more 
ergonomically suitable. These measures help reduce the risk of injury, but they can also be useful 
for someone who has already had a typing injury. For the latter group, these measures can enable 
them to type again without having the injury flare up. 

Most common operating systems have built in accessibility and keyboard functionality 
features where a user can control the behavior of the keyboard. These features include key repeat, 
key bounce, repeat delay, and a feature commonly know as “sticky keys,” which allows a user to 
use the modifier keys without having to hit multiple keys at once [Trewin, 2004]. These features 
could benefit someone who has somewhat limited fine motor ability but is able to use a standard 
keyboard anyway, perhaps with a limited number of fingers. 
Keyguards  

Users who have limited fine motor control in their fingers may benefit from the use of a 
keyboard/keyguard. A keyguard is a piece of hard plastic that sits directly over the keyboard, 
covering the entire surface. Above each key, a hole is cut through the hard plastic keyguard. 
Users type by resting their hand(s) on the keyguard and poking their fingers through the holes to 
hit desired keys. The keyguard enables someone, who might otherwise not be accurate enough to 



	
  

 

4	
  

type on a standard keyboard, to do so with a minimal amount of adaptation. Drawbacks to the 
keyboard/keyguard are that typing with it is slow, as poking fingers through the holes of the 
keyguard takes time, and the fingers are prone to blister and cut. The operating system keyboard 
and accessibility features described above can be used in conjunction with a keyboard/keyguard 
to enhance speed, accuracy and the user’s overall experience. 
The Dynamic Keyboard 

Transitioning into the research on text input for people with disabilities, studies have 
been conducted on users of traditional keyboards who have Parkinson’s Disease.  Parkinson’s is 
a degenerative neurological disease that causes people to lose some of their motor control and to 
involuntarily tremor.  Because of this, typing on a traditional keyboard can present challenges 
[Trewin, 2004].  Modern operating systems, such as Windows, Mac OS X, and some flavors of 
Linux, contain a suite of accessibility features, some of which can be enabled to help people with 
Parkinson’s.    

The Dynamic Keyboard is another solution.  It consists of software that runs in the 
background, hidden from the user.  It monitors the user’s keystrokes, analyzing them to 
determine which accessibility features would be most appropriate for them [Trewin, 2004].  An 
example of the algorithm used to dynamically adjust these features follows:   

The key repeat rate is calculated by examining the use of the arrow keys, 
backspace and delete.  Sequences of presses of these keys are observed, 
including sequences consisting of a single key press that repeats.  In each 
sequence, the user is assumed to be moving towards a target position.  The 
optimum way to achieve this is to hold down the key until the position is 
reached, then release it.  If a user under- or overshoots they may need to make 
some fine adjustments with extra key presses.  If many extra key presses are 
needed the sequence is considered an over- or undershoot.  If few extra key 
presses are used, the user’s positioning was accurate.  Over- and 
undershooting is an indication that the key repeat rate may be too fast.  When 
a user generally over- or undershoots, the key repeat rate is decreased by 0.2 
seconds.  The idea is that the repeats will gradually become easier to use and 
not appear to the user to be thrashing between long and short values. 
[Trewin, 2004, 74] 
The Dynamic Keyboard automatically adjusts the accessibility features of the operating 

system to values that it determines are most appropriate but respects feature adjustments that 
have been made by the user herself.  In this way, the Dynamic Keyboard is completely hidden 
from the user but attempts to adjust features to the user’s benefit.  A usability study was 
conducted, and the results provided are very qualitative.  Those who typed normally reported that 
they noticed very little adjustment in settings.  This is because the Dynamic Keyboard did not 
see a need to adjust many settings.  Those with Parkinson’s reported a mixture of positive and 
negative responses.  Some of the people in this latter group reported that they typed better and 
more accurately (with fewer errors) when using the Dynamic Keyboard.  One user, after typing a 
nonsense string and then erasing it with the backspace key, reported that her keyboard was not 
working.  This is because the Dynamic Keyboard recommended a high key repeat delay after the 
nonsense string was deleted and never compensated for it.  “Despite the lack of clear benefit 
from using the program,” the author concludes in the results section of the paper, “four [out of 
10] participants wanted to continue using it.”  [Trewin, 2004, 77]   
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The Canesta Projection Keyboard 
We next look at the Canesta Projection Keyboard [Roeber, et. al., 2003] a project targeted 

at the general population to be used in conjunction with mobile devices.  This keyboard consists 
of a projection of a traditional keyboard on a surface and a sensor which detects keystrokes.  This 
keyboard provides users with a familiar keyboard in a portable and low power manner.  The fact 
that the keyboard is a traditional QWERTY-keyboard means that the user can easily learn this 
new keyboard.  Usability testing was conducted with an adaption of the QWERTY-keyboard 
which had application keys above the top row and some other modifications.  According to the 
researchers, “the goal of the user studies was to evaluate the Canesta-keyboard relative to other 
text input devices in terms of error rate, input speed and user satisfaction.” [Roeber, et. al., 2003, 
713]  They comment that, “user satisfaction ratings for the Canesta-keyboard were high for most 
of the users tested.  However, some touch typists encountered text input difficulties and rated 
satisfaction lower due to the lack of tactile feedback.  Additionally, a number of users 
commented that they would prefer a larger keyboard to the one used in the study.” [Roeber, et. 
al., 2003, 713] 
Stylus Input  

Another form of text input that is suited for the general population is the use of a stylus. 
There are many forms of stylus input, from tapping keys on a virtual keyboard, to writing 
longhand handwriting on a digitized surface, to graffiti and sokgraphs. All of these methods of 
stylus input assume that the user has a high degree of fine motor control, can hold a stylus, and 
can accurately tap it and/or draw on the digitized surface.  

For someone who can touch type on a standard keyboard, most stylus-based text input 
methods will not be as fast as touch typing. The memorization of a large number of sokgraphs, 
however, may lead to typing speeds that rival the best touch typists. For someone who may only 
have control in one hand or arm but has enough control in that hand to hold a stylus and 
accurately tap it and/or draw on a digitized surface, stylus input may prove to be a viable input 
method. In addition, it is not necessary that the user holds the stylus with her hand. If a user does 
not have enough control in either hand but has sufficient control of another body part to be able 
to use a stylus, the stylus can be attached to that body part. 

Two studies will be discussed that relate to stylus-based input.  As is common knowledge, 
stylus-based input involves tapping or stroking a stylus across a digitized surface.  This is most 
common in the mobile computing context but can be used in desktop applications as well.  The 
first project that will be discussed is Unipad: Single Stroke Text Entry With Language-based 
Acceleration [MacKenzie, et. al., 2006].  In Unipad, each character consists of a unique stroke or 
motion of the stylus.  This minimizes the movement required.  Successive strokes can occur 
anywhere on the digitized surface, including on top of preceding strokes.  Unipad also 
incorporates word prediction into its interface.  The word prediction list is superimposed over the 
area where letters can be drawn, further reducing stylus movement.  The researchers used a 
normal unigram-based word prediction system with a few modifications.  First, they display a list 
of five words, starting after the first letter is drawn.  They also do not sort the list by probability 
but by size and then lexically with the hope to reduce visual scan time and effort.  The system 
also uses suffix completion.  Users add suffixes to a word by making a stroke that enters the 
suffix mode.  They then make a selection from a list of twelve suffixes.  This has two benefits.  
First, it reduces stylus strokes overall.  Second, words with multiple  suffixes are removed from 
the word completion list, creating a richer list.  They also use a list of the most frequent words at 
the beginning of a word when no letters are present. 
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The researchers conducted a user study to analyze keystrokes per character (KSPC).  
Obviously, a KSPC of 1 means that the user was drawing every character and was not taking 
advantage of the word prediction or suffix completion features.  Analyzing the results of the 
study, the researchers concluded that, “clearly, learning is important as well.  With practice a 
user’s KSPC may fall as features are learned and exploited at the earliest opportunity.  And 
finally, it is not clear that reductions in KSPC yield a corresponding increase in throughput, since 
the acceleration features also add cognitive demands to the interaction.” [MacKenzie, et. al., 
2006, 81] 

The second stylus-based input method we discuss is the SHARK2: A Large Vocabulary 
Shorthand Writing System for Pen-based Computers [Kristensson, et. al., 2004].  The goal of this 
project is to seamlessly transition users from a stylus keyboard, where each key has its own box 
that can be tapped with a stylus, to a method of input where users draw a sokgraph - a sequence 
of vectors between the letters on the stylus keyboard that make up the word.  SHARK2 enables 
users to draw these sokgraphs anywhere on the digitized surface (they do not necessarily need to 
coincide with the actual position of the keys on the stylus keyboard).  This way, the user can 
learn the feel of typing a word with a sokgraph and then type it without looking for precise 
locations of each key.  Algorithms were developed to interpret these sokgraphs and to match 
words with sokgraphs that closely resemble the word but were slightly off. 

In this project especially, the learning curve is quite steep in order to gain real benefits, 
due to the fact that the user must physically memorize many different sokgraphs before she can 
truly take advantage of the sokgraph typing system.  To test what was theoretically possible 
given a large amount of memorization, the authors of this paper conducted a study on themselves, 
during which they memorized a severely limited number of sokgraphs and wrote sentences 
repeatedly.  The authors achieved between 69 and 85.6 words per minute, where the “expert 
performance using an optimized stylus keyboard has been theoretically estimated to about 45 
wpm.” [Kristensson, et. al., 2004, 51]  In this project, as is the case in a number of projects 
described in this thesis, no usability tests could be found on people with disabilities.   
Voice Recognition  

Voice recognition is another text input method that is suited for the general population. 
Growing numbers of people are using commercial voice recognition systems to input text into 
the computer, as many prefer this input method to typing on a traditional keyboard. Historically, 
a significant amount of “training,” where the computer would listen to the user read a 
predetermined text and learn the nuances of their speech patterns, was required, however, 
modern voice recognition systems require less training than older ones do. A condition for being 
able to use and benefit from voice recognition is the ability to have clear and consistent speech. 
For people who do not have the fine motor control required to type on a standard keyboard or use 
a stylus but do have clear and consistent speech patterns, voice recognition may be a viable text 
input method.  

In voice recognition systems, a key element of successful use is the ability to error correct. 
Error correction can be done from within the voice recognition system or it can be done using 
another mode of text input. The degree of initial accuracy of the voice recognition system and 
the ease with which the user can error correct both contribute to the overall usability of this input 
method for a given user.  We will discuss a multimodal system of text input that utilizes voice 
recognition later in this section. 
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Eye Gaze Recognition  
Eye gaze recognition is a text input method that is specifically targeted for use by people 

who lack enough control of their hands and arms to be able to type on a standard or adapted 
keyboard. As stated, eye gaze recognition involves the user looking at a monitor and infrared 
sensors that detect where the user is looking. In most eye gaze recognition systems, the position 
of the eyes on the screen corresponds informally to the movement of a mouse, and a user can 
type by clicking the mouse on an on-screen keyboard. Using infrared technology, researchers can 
accurately pinpoint where on the screen a user is looking.  There are two common ways to 
activate a mouse click in an eye gaze recognition system. The first is to have one or more 
switches positioned at areas of the user’s body where they have most control. They can hit the 
switch(es) while they are looking at the desired target (key), and that will produce a mouse click 
(or type a letter). This has the disadvantage that, since human eyes move relatively quickly, it has 
been documented that users will inadvertently look away from the target before they actually hit 
the switch [Zhao, et. al., 2012].  The second dominant way of activating a mouse click in an eye 
gaze recognition system is that of dwell time. For this, a user stares at a target for a set amount of 
time to select it. Two disadvantages are present when dwell time is used to activate a mouse click. 
First, there is an inherent limit to the speed with which a user can type, given that each key press 
takes as long as the dwell time. Second, it has been documented that error rates are high with 
dwell time, because users will inadvertently look at an object on the screen for the dwell time 
period without meaning to select it [Zhao, et. al., 2012]. 

Traditional eye gaze keyboards use dwell time to have the user activate buttons.  In one 
study [Zhao, et. al., 2012], however, researchers incorporated the use of a tooth clicker - a device 
that sits on the ear and detects gentle clenching of the jaw.  It can differentiate this clenching 
from normal clenching of eating or speaking.  The researchers designed a system where a user 
could look at keys on an on-screen keyboard and then use the tooth clicker to select keys.  They 
conducted a usability study in which they compared this form of input to traditional eye gaze and 
dwell time input.  The results of the study showed that the shorter dwell time (490 ms) produced 
input speeds that were higher than the speeds obtained with the tooth clicker but lower than the 
speeds obtained with the longer dwell time (880 ms).  The researchers noticed that the accuracy 
of the tooth clicker was decreased when a user would look away from the desired key before she 
would clench her jaw.  This was apparently a common phenomenon.  The researchers 
hypothesized, however, that a tooth clicker may be appropriate for applications where the 
necessary rate of activating objects on the screen was minimal, such as surfing the web, rather 
than typing a document. 
Sign Language Recognition 
 For users who know sign language and use it on a regular basis, automatic sign language 
recognition may be a viable form of text input.  Sign language recognition consists of one or 
more cameras that track the user’s hands and/or sensitized gloves that track the position and 
motion of the hands.  In either case, the computer translates signs into text, using hidden Markov 
models to predict what the user is saying.  A problem when recognizing American Sign 
Language (ASL) is that the syntax and phrasing of ASL does not directly match that of spoken 
English.  Furthermore, as Starner, Weaver and Pentland note, “conversants in ASL may describe 
a person, place, or thing and then point to a place in space to store that object temporarily for 
later reference.” [Starner, 1998, 1371]  This, along with facial expressions, which are used 
heavily in sign language, are not able to be parsed in modern sign language recognition systems. 
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 Sign language recognition may be a viable form of text entry for those who are familiar 
with the gesture based language.  As mentioned, sign language recognition converts a user’s 
signs into text by tracking the motions of their hands, either with cameras or sensitized gloves.  
In one study, researchers investigated different accuracy rates based on where the camera was 
placed.  In the first experiment of the study, the camera was placed on a desk pointed at the user, 
in a position of someone to whom the user would be communicating.  In the second experiment, 
the camera was embedded in the visor of a cap worn by the user herself.  The camera pointed 
down from the visor towards the user’s hands to record the perspective of the user herself.   
 In this particular study, a limited 40-word vocabulary was used.  Word accuracy of about 
90% was reported for the desk based system after extensive training, and word accuracy of about 
97% was reported for the cap based system.  These results, of course, are not indicative of how 
the system in this study would respond to a larger vocabulary.  Furthermore, the camera image 
was highly controlled to maintain continuity between images.  Changes in image background can 
offset the accuracy of hand placement recognition, and occlusion of one or both hands was a 
major problem discussed. 

Nonetheless, the authors believe that sign language recognition systems can be a viable 
text input method.  They also propose that the visor based system, together with a wearable 
computer, could become a robust system for ASL to synthesized speech conversion [Starner, 
1998].  
Switch Input  

Switch activation is another input method that is traditionally targeted for use by people 
with physical disabilities, but elements of it are used in mobile applications as well. There are 
two distinct forms of switch input: single switch and multi switch input. For single switch input, 
a user may only have enough control to press one pushbutton switch. In this situation, software 
displays a list or a two-dimensional matrix of items from which the user can select. In the case of 
a list, the software repeatedly scans through the list, pausing at each item for a set amount of time. 
The user selects the desired item by hitting the switch when the software pauses on that item. In 
the case of a two-dimensional matrix, the software cycles through the rows (or columns) of the 
matrix until receiving a switch-hit from the user. Then, the software scans through the items in 
that row (or column) until receiving a second switch-hit from the user. In either case, even 
though the user only needs to be able to press a single switch, she needs enough control to be 
able to press it while the software is pausing on the desired item. Increasing the amount of time 
the software pauses on each item will increase accuracy but decrease overall speed. As is 
obvious, the letters, numbers, punctuation, and other keys on a standard keyboard can comprise 
the list or matrix from which a user can select. The single switch input method is generally very 
slow, as the user must wait for the software to scan through each item each time she wants to 
select an item.  

The speed of the switch input method can be increased if the user is able to accurately hit 
more than one switch. For the one-dimensional list and two-dimensional matrix, if the user is 
able to hit two switches, one switch can control the scanning, and the other can be a selector. A 
user can quickly cycle through the list or rows (or columns) by holding down the first switch and 
releasing it at or before the desired item (or row).  Repeatedly hitting the first switch will cause 
the software to cycle through the items. In this way, the user is not waiting for the software to 
scan, pausing at each item for a set period of time. As stated, the second switch can serve as the 
selector. 
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If the user can accurately hit three switches, one of them can be a selector, one of them 
can move the focus down, and the other can move the focus up. This, again, will increase overall 
speed, as the user has more control over where the focus is. Having four switches does not 
increase input speed when selecting from a one-dimensional list or two-dimensional matrix, but 
having five switches dramatically increases speed when using a two-dimensional matrix. Four of 
the switches can be used to control the focus, each controlling a different cardinal direction, and 
the fifth switch can be the selector.  

There is another paradigm for switch input, other than using switches to select from a 
one-dimensional list or two-dimensional matrix. This paradigm requires at least two switches (or 
one switch where the user can differentiate between long and short switch presses). In this 
paradigm, sequences of switch presses correspond to letters, numbers, punctuation, modifier 
keys, etc. The user presses sequences of switches to type. In this paradigm, as was the case with 
the first paradigm, increasing the number of switches will increase overall speed. The user must 
be able to memorize the sequences, or have a visual display that can guide her in her choosing. 
Dit4Dah and BinScroll 

Two projects are worth mentioning as they each take a separate approach to switch input.  
The first is Dit4dah [Tanaka-Ishii, et. al., 2004].  This project incorporates Morse Code based 
text entry with a word prediction system that takes into account the difficulty of entering a given 
word.  A user can input text using long and short switch presses, modelled after Morse Code.  
When a word is being typed, a list of potential completed words is presented to the user.  The 
user can either continue entering letters using Morse Code or depress the switch for an extended 
amount of time to scroll through the list presented.  The authors claim to be the first ones to have 
incorporated entry difficulty in the selection of the word prediction list. 

The second project that relies exclusively on switch input is BinScroll [Lehikoinen, et. al., 
2002].  While not directly related to text entry, BinScroll is included here as the project contains 
aspects that will be useful in our analysis of text input.  The objective of BinScroll is, using only 
four buttons, to quickly select a desired item from an ordered list.  This is accomplished through 
a process that is based on the binary search algorithm, with a few additions.  The project was 
designed mainly for mobile applications, but it also has implications for users with disabilities.  
Also, the ordered list could be replaced by an alphabet and other keyboard keys, enabling a user 
to input text. 
Virtual Logo Keyboard 

There are many other research projects and commercial products that make use of the 
scanning method and switch input.  One such project that is of particular interest to computer 
science educators is the Virtual Logo Keyboard [Norte, et. al., 2007].  This was designed to aid 
people with disabilities in the act of writing computer programs in the Logo programming 
language.  The virtual keyboard consists of the traditional keys of a standard keyboard, but it also 
has keys for common Logo commands.  The Virtual Logo Keyboard can either interact directly 
with a Logo interpreter, issuing commands directly to it, or send its output to a text editor.   

A usability study of the Virtual Logo Keyboard was conducted on three high school 
students who were in the process of learning the Logo programming language.  Two of the 
students had physical disabilities while one did not.  The study concluded that the virtual 
keyboard was not beneficial for the student who did not have a disability, although they did 
benefit from use of the integrated help system.  For both of the students with disabilities, the 
Virtual Logo Keyboard was helpful.  For the student who was able to use a mouse to interact 
with the keyboard, the input speed greatly increased.  It was observed that the input speed did not 



	
  

 

10	
  

increase as much for the student who needed to use the scanning method, but the fact that the 
Virtual Logo Keyboard can issue entire commands meant that the overall input time for this 
student was decreased as compared to input without use of the Logo keyboard [Norte, 2007]. 
Wii Multimodal System 

As is the case with the Virtual Logo Keyboard, many projects designed to help people 
with disabilities interact with computers incorporate more than one technology.  This is the case 
with the Wii Multimodal System (WiiMS) [Honye, et. al., 2012].  WiiMS consists of a head 
tracking system to manipulate the position of the cursor on the screen and voice recognition to 
simulate mouse and keyboard buttons.  The project was designed primarily for use by people 
with spinal cord injuries who are not able to control their body from the neck or shoulders down.  
An interesting aspect of the voice recognition is that the keyboard and mouse commands are 
divided into sections, and the user must orally switch sections before she can say a button within 
the section.  This is to attempt to reduce error and ambiguity.  Usability tests for this project were 
conducted on able bodied persons with a wide range of native languages, with the hope of 
getting an indication of how the system would work with people with disabilities and varying 
speech patterns.  The tests were conducted on these subjects due to the unavailability of people 
with disabilities.  Researchers used the study to analyze the learnability, intuitiveness, user 
satisfaction, and effectiveness of WiiMS.  
Foot Controls  

Going back in time, prior to the popularity of graphical user interfaces, studies were 
conducted on how to decrease the time required to position a cursor in a text editor.  Today, we 
do this with incremental positioning systems such as arrow keys, relative positioning systems 
such as mice, and absolute positioning systems such as styluses.  All of these systems require 
time to use.  One study [Pearson, et. al., 1986] looked at reducing this time for people using 
workstations.  The researchers argue that input time is wasted while the user switches between a 
keyboard and a mouse or other cursor positioning system.  If this wasted time could be reduced, 
input speeds could increase.  They define homing time as the time required to move the hand 
from the mouse back to the keyboard.  As the background to their research, they discuss various 
other ways to reduce homing time.  One way is to embed the cursor positioning system inside the 
keyboard.  Another is to make a one handed keyboard, which frees the other hand for cursor 
positioning, but the problem with one handed keyboards (as well as sequence based switch input 
methods) is that seldom used characters are hard to recall. 

In their paper, the researchers present four different methods for foot-based cursor 
positioning.  The first approach involves no moving parts.  It simply has the foot resting on a flat 
or otherwise shaped sensitized surface which can detect the foot’s movement.  The cursor would 
move in the direction that the foot moved.  Similar to picking a mouse up off the desk to 
continue moving in the same direction, a user could pick her foot up off the surface and place it 
back down at a different location.  The second approach was deemed “the swing approach,” 
where each foot was suspended in the air, each able to swing forward and backward 
independently of each other.  One leg would control the vertical motion of the cursor and the 
other would control the horizontal motion.  Swinging the foot forward would move the cursor 
one way and backward would move it in the opposite direction.  The third approach was similar 
to the second but each foot would be able to swing as if it was a pendulum.  This would create 
more options.  The fourth approach involved placing the toe of each shoe in a rectangular object 
that had switches on each of the four walls.  By moving the foot in specific ways, a user could 
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engage between 0 and 4 of these switches at once, thus, providing many combinations.  No 
usability statistics were provided. 

 
IV. Method Comparison to a Standard Keyboard 

In this section, we will first analyze the standard keyboard and then compare the standard 
keyboard to a select number of the alternative input methods previously outlined.  To begin, we 
note that a standard keyboard is the dominant means of inputting text into a computer.  Standard 
keyboards vary in size, number of keys, thickness of keys, etc., but they all take the same basic 
shape. 

Most people who do not have physical disabilities find the standard keyboard to be easy 
to learn, easy to use, efficient, and accurate.  The time required to learn how to type on a 
standard keyboard will depend on whether the user has previous experience typing on a 
typewriter, since the location of the keys on a standard keyboard is based on that of typewriters.  
This, perhaps, is the biggest reason why standard keyboards have become so popular.  They rely 
on the same basic key layout as typewriters, so historically, people with experience using 
typewriters have found keyboards to be familiar.  This learning time will also depend on the 
user’s ability to understand the basic functions of text input into a computer.  Once learned, users 
generally do not have to think about typing on the standard keyboard, especially if they touch 
type, and can focus on the text being inputted. 

Alternative keyboard layouts have been developed to try and speed up the text input 
process.  The QWERTY key layout was originally developed for typewriters, with the goal of 
actually slowing down the typing process, since typists were getting too fast for first and second 
generation mechanical typewriters and keys were sticking.  Today, the QWERTY key layout still 
ships with the vast majority of laptop and desktop computers, although alternative key layouts 
that enable users to type faster exist.  One such layout, which attempts to reduce finger motion 
by having the most commonly used keys on the home row of the keyboard is the Dvorak 
Keyboard. [Joyce, et. al., 1990] 

That people can easily learn and use standard QWERTY keyboards, given that they are 
part of the culture that emerged from typewriters, is not always the case for people with 
disabilities.  Depending on the type and magnitude of the disability, the standard keyboard may 
be hard, or even impossible or impractical, to use.  Several reasons account for this.  First, the 
user may lack control of her hands or arms, something that is required to type on a standard 
keyboard.  Even if she has gross motor control of her hands and arms, however, she may lack the 
fine motor skills necessary to hit isolated keys on the standard keyboard.  Her lack of fine motor 
skills may cause her to press numerous unwanted keys when she is trying to press a certain key. 

The Dynamic Keyboard is a piece of assistive technology that was developed to mainly 
assist people with Parkinson’s Disease who progressively lose fine motor abilities in their hands.  
As stated above, the Dynamic Keyboard adjusts accessibility features on the fly based on an 
analysis of the user’s typing.  It assumes that the user is typing on a standard keyboard.  Through 
a suite of algorithms that monitor and analyze the user’s typing style, the Dynamic Keyboard 
determines which accessibility features of the Windows operating system would be most 
beneficial to them and then adjusts those features automatically, without the user’s knowledge.  
Accessibility features manually set by the user are respected and left unchanged.   

As stated, the Dynamic Keyboard was developed for people with Parkinson’s Disease, 
who can have tremors in their hands as well as loss of fine motor control.  Many of these users 
may not have prior experience with the accessibility features of common operating systems, may 
not know that they exist, and/or may not be interested in adjusting them over a long period of 
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time to achieve the ideal set of settings.  The Dynamic Keyboard is a solution to this problem, as 
it adjusts settings for the user. 

Additionally, it has been noted in the research that the symptoms of Parkinson’s Disease 
vary based on the length of time that has elapsed from when the person took Parkinson’s 
medication [Trewin, 2004].  Symptoms intensify as the medication wears off.  Because of this, 
someone with Parkinson’s may use a keyboard one way when her medication is strong and 
another way when it is wearing off.  Instead of having to manually adjust accessibility settings 
throughout this cycle, the Dynamic Keyboard detects changes in keyboard usage and adjusts 
settings automatically.   

Usability tests for the Dynamic Keyboard have only been conducted on people with 
Parkinson’s Disease and people who did not have any disabilities, although people with other 
disabilities that affect their fine motor control may benefit from the use of the Dynamic 
Keyboard.  Those without disabilities reported seeing little or no change in how the keyboard 
responded, and this was verified by the fact that the Dynamic Keyboard made very few 
accessibility settings adjustments [Trewin, 2004].  For these users, the Dynamic Keyboard 
detected standard typing with relatively few errors, so it did not result in a need to alter settings 
much.  This suggests that while people without disabilities would not find much benefit in the 
use of the Dynamic Keyboard, it does not interfere with their typing as it acts much like a 
standard keyboard. 

As mentioned above, the Canesta Projection Keyboard was developed to be used in 
conjunction with mobile devices.  It projects an image of a standard keyboard on a surface and 
uses sensors to detect finger motions.  For able-bodied users who are somewhat familiar with a 
standard keyboard, the Canesta Projection Keyboard is easy to learn and easy to use, as 
documented in the user study.  For touch typists, this keyboard presents an obstacle, since touch 
typists are used to resting their fingers on the home keys, something that interferes with the 
Canesta Keyboard’s sensors.  For people who already type on traditional keyboards, the Canesta 
Keyboard would be easy to learn, since it is based on the well-known QWERTY layout. 

The Canesta Projection Keyboard does not possess any significant hardware or software 
features that would be beneficial to people with physical disabilities, particularly those who 
cannot use a traditional keyboard.  Given that the keys on the Canesta Projection Keyboard are 
merely projected on a surface, there is no tactile feedback of where the keys are or the barriers 
between one key and another.  For people who do not have a significant amount of fine motor 
control, this could create a barrier.  Furthermore, since the intended use of the Canesta Keyboard 
is in mobile applications, depending on the disability, the user herself may not be able to 
physically set the keyboard up in mobile circumstances. 

Our analysis of the Unipad system of stylus input begins with noting the fact that each 
character consists of a single stylus stroke.  The shapes of these strokes were designed to mirror 
traditional upper and lower case letters, with a few modifications that make each character 
distinct and easy to draw [MacKenzie, et. al., 2006].  A user will have to learn each of these 
shapes before she can use Unipad efficiently.  Once learned, however, drawing shapes for each 
letter will come naturally to the user and she will not have to think about each character.  
Reductions in KSPC can be achieved by using the word prediction element of Unipad, but as the 
researchers noted, this does not necessarily increase overall throughput, since scanning the word 
prediction list takes time and requires more cognition. 

The main two challenges faced by people with disabilities who are trying to use Unipad 
is whether they will be able to use the stylus and whether the system can recognize their strokes 
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to a sufficient degree of accuracy.  If these two challenges are overcome, Unipad could be a 
beneficial input method for people with disabilities, and especially for people who may not be 
able to use a traditional keyboard. If the user can accurately use a stylus but uses it very slowly, 
the word and suffix completion features of Unipad will be of huge benefit, as they will increase 
speed.      

Our analysis of SHARK2 is similar to that of Unipad, except we note that for SHARK2, 
the learning curve is quite high, since a user must learn a large number of sokgraphs before she 
can truly take advantage of the technology.  As noted above, however, once a sufficient number 
of sokgraphs are learned, a user’s typing speed can increase dramatically, perhaps even rivaling 
speeds of touch typists on traditional keyboards.   

People with disabilities would face similar challenges in using SHARK2 as they would 
face when using Unipad.  In addition, a user must be accurate enough in her use of a stylus to 
draw the sokgraph in such a way that the system will recognize them as words.  If a user with a 
disability can draw sokgraphs with sufficient accuracy, this system may be more beneficial than 
a traditional stylus-based key tapping system, as each sokgraph can be drawn in one long stroke, 
without having to lift the stylus off the digitized surface.  This may speed up input for people for 
whom lifting the stylus takes time. 

The foot based input methods described above create opportunity for interesting analysis.  
Though the study was targeted at cursor positioning, the concepts can also be applied to mouse 
positioning and to typing itself.  It is clear that the first approach described in the study (that of 
placing the foot on a flat or otherwise shaped sensitized surface) is ideal for cursor and mouse 
positioning and may not be suitable for text entry, as it would be difficult to divide up the surface 
into different sections in order to distinguish between keys or switches.  That being said, the 
other ideas discussed in the paper can be applied to text input.  All of these ideas have discrete 
switches that are engaged when the user moves her foot or leg in certain ways.  Combinations or 
sequences of these switch presses could represent keys on a traditional keyboard, characters in 
the ASCII table, or sequences of characters and/or entire words.  For people who cannot use their 
hands but who have sufficient foot control, this may be a great option.  The final idea presented 
in the paper (i.e., having four switches controlled by each foot) could yield a powerful system of 
input for people with disabilities, based on the switch input methods discussed above.  

The following input methods were all developed for people with some type of physical 
disability.  We will analyze them using the same criteria we have been using but we will focus 
on how each method benefits people with disabilities.  When appropriate, we will also mention 
how the method could be used by people without disabilities and how it compares to a standard 
keyboard.   

The first such method we will analyze is Dit4dah.  As mentioned above, Dit4dah uses a 
Morse code based system of switch input text entry.  Users hit a single switch for a long or short 
press to indicate bits of Morse code.  A word prediction list is also displayed to the user, and she 
can select words from it with an extended press of the switch.  Obviously, entering text with a 
single switch through Morse code will be slow, even with word prediction, since a user must 
scan through the lists of words in order to select one.  Input speeds will be significantly slower 
than a standard user of a traditional keyboard, but for users who can only operate a single switch, 
Dit4dah possesses some advantages over traditional scanning input methods.  Learning the 
Morse codes for each character will demand a significant amount of time, but once learned, the 
user may be able to type at a faster rate than if she was using the scanning method. 
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The other method that uses switch input which we analyze is BinScroll.  Through 
BinScroll, a user can select an item from an ordered list with only four buttons, using a modified 
version of the binary search algorithm.  BinScroll was originally developed and tested with a 
large list of movie titles, where the user was tasked to select a specific title from the list 
[Lehikoinen, et. al., 2002].  However, as noted above, this list could easily be adapted to include 
letters, other characters, and possibly common words and phrases.  The binary search algorithm 
provides a method to select the desired result in log n time, where n is the length of the list.  If a 
user has the ability to control four switches, BinScroll, adapted to contain letters, symbols, and 
perhaps common words, could be beneficial, as it could create a quick input method, based on 
binary search.   

The results of the usability study of the Wii Multimodal System (in which a user controls 
the mouse by head movements and types on a keyboard through voice commands) reveal that 
users found the system easy to learn, easy to use, and intuitive [Honye, et. al., 2012].  Study 
participants were more comfortable with the cursor positioning system than they were with the 
text input method, since this method only recognized letters and other keyboard keys instead of 
entire words.  They found this to be too slow for efficient text input.  They also reported that the 
system would misrecognize letters that sound the same, such as “m” and “n”.  Though the 
research was targeted for people with spinal cord injuries, study participants (all able-bodied 
people) reported that people without disabilities may want to use the cursor positioning system, 
as they found it to be easy to use and efficient. 

 
V. The Framework 

We will now propose a framework for the development of a recommender system that 
will be able to suggest a ranked order of input devices based on a user’s specific abilities.  Our 
framework aims to be inclusive in two ways.  First, we aim that input methods that span a wide 
spectrum will all be able to fit in our framework.  We acknowledge that it would be impossible 
and impractical for us to include all types of input methods here, but we hope that, based on the 
proposals and analysis here, this framework will allow others to analyze other forms of input that 
either exist now or are yet to be invented.  Second, it is our intent that our framework 
thoughtfully and respectfully encompasses persons with a wide array of physical abilities.  We 
create this framework with the hope that it can be used in future research as a basis for a 
recommender system to enable a person with a specific set of physical abilities to determine 
what type/form/method of text input would be most appropriate for them to use.  Developing a 
recommender system is beyond the scope of this thesis, primarily because the amount of data 
required is too large and much of it is not available, but we hope that this may serve as a 
foundation. Limitations other than physical can be included or added to the framework, but for 
now we will concentrate on physical issues. 
 In designing a framework to assist a user in determining the input method/device that 
would be most suited to her specific set of abilities and challenges, it might be natural to ask a 
series of questions that the user could answer, after which a ranked list of recommended 
methods/devices would be produced.  Examples of such questions follow in no specific order.   
● Any fine motor control in either hand? 
● Differentiate finger presses? 
● Hit more than one keyboard key at a time? 
● When trying to use standard keyboard, constantly hit undesired keys or unable to hit 

desired keys? 
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● When trying to use standard keyboard, observe undesired multiple transmissions of same 
character? 

● When trying to use standard keyboard, requires much time and adjustment to accurately 
position cursor using the arrow keys? 

● Hold a stylus? 
● Accurately draw and tap on a digitized surface? 
● Memorize stylus handwriting? 
● Memorize sokgraphs? 
● Hit four or more switches positioned at any location of the user’s body? 
● Hit one - three switches positioned at any location of the user’s body? 
● Control timing and duration of switch presses? 
● Rate of character input slow enough to warrant word prediction? 
● Clear and consistent speech pattern? 
● Control of eye movement? 
● Memorize switch encoding scheme? 

Though these questions seem like the natural questions to ask when making a 
determination of the most appropriate input device, we found that these questions are not, in fact, 
helpful when developing a recommender system.  To ask these questions implies that we 
construct our framework of questions in the form of a tree or directed acyclic graph (DAG).  If 
we were going to construct our own framework in the form of a tree or a DAG, we would put a 
question about a user’s abilities at each node.  These questions could be as broad as whether they 
have any control of their extremities or as specific as whether they have enough fine motor 
control in all ten fingers to accurately touch type on a standard keyboard.  The questions (nodes) 
would be placed in the tree or DAG in such a way that one question would lead to the next and 
eventually the path would lead to a leaf node, which would be a recommended input method or 
set of methods.  
 This approach, however, is extremely rigid, limiting, and prescriptive.  In a tree, by 
definition, there is exactly one path from the root to any one leaf.  The manner in which a user 
would answer the series of questions in a tree (or in a DAG in this case) would automatically 
exclude certain types of input devices that might, in fact, benefit the user.  We, therefore, do not 
believe that a framework of questions structured as a tree or a DAG is an appropriate method for 
this application.   
Benefits of a Recommender System 

We believe producing a ranked list of recommended input methods/devices is the most 
appropriate way to construct this framework, given that we are dealing with human beings who 
are somewhat unpredictable.  No matter how detailed the questions are and no matter how much 
thought and effort goes into designing appropriate and targeted questions that are hoped to lead a 
user to the ideal method/device, no framework will fully encapsulate the nuances that emerge 
when dealing with human beings.  These nuances are perhaps more extreme and less well 
documented for people with disabilities than they are for the general population, so this adds yet 
another layer of complexity.  Therefore, we believe that a framework which leads a user to a 
single answer (one specific input method, for example) is inappropriate because it may very well 
be the case that that input method may not work or may not be ideal for that specific user.  Hence, 
a recommender system, producing a ranked list of suggested input methods/devices, is much 
more appropriate to this application.  It gives the user the ability to research and then perhaps try 
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the top ranked suggestion, and then if that does not work, continue down the list to the next 
suggestion.  
A Recommender System for Suggesting Input Devices 
 We will now propose the framework for the development of a recommender system for 
suggesting a ranked order of input devices based on a user’s disabilities.  We construct this 
recommender system in the form of a matrix.  Along one axis (the x axis in our model), we have 
three categories of columns.  In the first category, we have four columns which represent a 
person with the standard set of abilities.  These columns are Standard Speech, Standard Gross 
Motor, Standard Fine Motor in Hands, Standard Sight.  Our reasoning for dividing a person with 
the standard set of abilities into multiple columns (we chose four) will be evident shortly.  Our 
second category includes columns for No Speech, No Gross Motor, No Fine Motor in Hands, No 
Sight.  We will explain these columns shortly, as well.  Our third category includes only one 
column, Increased Fine Motor in Feet, but it can be expanded to include other columns.  This 
third category requires special attention and will be explained at the end of this matrix 
description.  Along the other axis of our matrix (the y axis in our model), we place input devices. 

 
Table 1 

 

St
an
da
rd
'S
pe

ec
h

St
an
da
rd
'G
ro
ss
'M

ot
or

St
an
da
rd
'F
in
e'
M
ot
or
'in
'H
an
ds

St
an
da
rd
'S
ig
ht

N
o'
Sp
ee
ch

N
o'
G
ro
ss
'M

ot
or

N
o'
Fi
ne

'M
ot
or
'in
'H
an
ds

N
o'
Si
gh
t

In
cr
ea
se
d'
Fi
ne

'M
ot
or
'in
'F
ee
t'
(e
nt
er
'1
'fo

r'
ve
ry
'

go
od

)

Standard'Keyboard 0.8 A0.8 0.5
Software'Adaptations' 0.4 A0.3 0.6
Keyguard 0.02 0.4 0.7
Stylus'Recognition 0.5 A0.8 0.9
Voice'Recognition 0.7 A1 0.9 0.7
Eye'Gaze'Recognition 0.03 0.1 A1
Sign'Language'Recognition 0.01
Switch'Input 0.1 0.1 0.01 0.7 0.8
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We produce the recommended ordering of input devices by multiplying this matrix by a 
column vector which represents a person.  This column vector has cells that represent each 
column in our matrix, and in each cell, we place a value between 0 and 1.  These values represent 
the degree of applicability of that column in the person we are evaluating.  For example, a person 
with the standard set of abilities would have 1’s in the first four cells of the column and 0’s in the 
second four cells.  A person with no fine motor control in their hands would receive a 0 for the 
Standard Fine Motor in Hands column but a 1 in the No Fine Motor in Hands column.  Gradient 
values in the person vector are permitted, so long as the values of pairs of cells which correspond 
to each other (i.e., Standard Speech and No Speech) sum to 1.  We will leave the third category 
of columns in our matrix for the end of this description. 

Determining the appropriate values for the matrix itself is beyond the scope of this thesis.  
We acknowledge that the data we use to demonstrate the effectiveness of our framework are 
largely speculative, but this is unavoidable.  The data, however, are based on an analysis of the 
research presented in earlier sections of this thesis, as well as on the prior experiences of the 
author, who has a physical disability.  As stated, though we lack accurate and sufficient data to 
implement such a recommender system, we propose the framework with the hope that it can be a 
catalyst for future research and implementation.   

We will describe the data we use category by category, and by doing so, we hope to make 
our theory clear.  We will begin with the first category of columns - the category which 
represents a person with the standard set of abilities.  As stated, the values in the person vector 
that correspond to this first category would be all 1’s for a person with the standard set of 
abilities, and all values in the person vector which represent the second category would be 0.  
Thus, for a person with the standard set of abilities, only the values in the first category of 
columns in our matrix influence the result of the dot product multiplication.  This is a key insight 
on which we base much theory. 

For a person with the standard set of abilities, we encode the desired ranked ordering of 
input devices by setting values in our matrix in the first category of columns in the following 
manner.  All values in these first four columns are between 0 and 1 in our implementation, with 
higher numbers representing higher recommendation scores.  For example, we gave the Standard 
Keyboard a score of 0.8 and Voice Recognition a score of 0.7, but we gave Sign Language 
Recognition a score of 0.01, since we assume that a person with the standard set of abilities 
would have extremely little benefit from the use of sign language recognition.  It is important to 
note in which column we place these values.  We place values for Standard Keyboard, Keyguard, 
and Stylus Recognition in the Standard Fine Motor in Hands column, since the usefulness of 
these input methods only depends on the degree of fine motor ability that the person has in her 
hands.  Similarly, we place the value for Voice Recognition in the Standard Speech column, 
since the usefulness of voice recognition only depends on the degree that the person can speak 
normally.  For some of our other input methods (Switch Input, for example), we distribute the 
desired value across multiple columns.  A person can have fine or gross motor ability (or both) to 
have switch input be useful, so we distribute the desired value for Switch Input across the two 
appropriate columns.  We are cognizant, however, that we want to maintain the desired ranked 
output for a person with the standard set of abilities by having the sums of each row correspond 
to the desired scores for each input method.  

Next, we will explain the values in the second category of columns.  Each column in this 
category corresponds to a negation of a column in the first category, although the values in the 
columns in the second category are somewhat different from those in the first category.  All 
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values in this second category range from -1 to 1, with -1 meaning that the input device would be 
extremely unuseful for someone with the given challenge (No Fine Motor in Hands for the 
Standard Keyboard, for example), and 1 meaning that the input method would be very helpful.  
As was the case with the first category of columns, we can either place values in only one 
column for a given row or in multiple columns.  An example of an input device that has values in 
multiple columns is Eye Gaze Recognition, where we give it 0.1 in the No Gross Motor column 
and -1 in the No Sight column.  It is important to note that as opposed to the first category where 
we only placed values in columns where the ability directly impacted the usefulness of a given 
input device, here in the second category, we have a bit more leeway.  This, in fact, is the power 
of the recommender system.  We are able to suggest that someone who has no gross motor 
ability may want to try eye gaze recognition by giving a positive value in that cell.   

Now we shall explain the third category of columns.  As was stated, there is only one 
column in this category in our implementation, but this category, as well as the other two, can be 
expanded.  The column we have in this third category is Increased Fine Motor in Feet.  We put 
this column for someone who has developed a degree of fine motor ability in their feet that is 
above what the average person would have.  Most likely, this compensation would be a result of 
a lack of fine motor ability in the hands, and this fact must be accounted for in the dot product 
multiplication, because otherwise the math does not work.  A 0 in the person vector for this 
column means that the person has average fine motor ability in their feet, and increasing scores 
mean increased ability.  However, since the person is presumably compensating for a lack of fine 
motor ability in their hands, the value in the person vector that corresponds to No Fine Motor 
Ability in Hands must be reduced proportionately before the multiplication is executed in order 
for the math to work.   
Implementing the Recommender System on Sample Users 

We will now present a few examples to illustrate how this recommender system could 
function.  It is important to bear in mind that the values in our matrix are largely speculative and 
that better results would be yielded from a larger table with researched data.  We present these 
examples, however, to illustrate the method, rather than specific rankings.   

We will consider four hypothetical individuals.  We will say that Person A does not have 
any noticeable disabilities.  We will say that Person B has athetoid cerebral palsy, Person C does 
not have any control in their legs, has tremors in their hands, and has a very mild speech 
impediment, and Person D is blind and has amputated arms but has compensated for lack of fine 
motor control in hands by developing very high fine motor control in the feet.  Here are the 
person vectors for these four individuals: 

   
Person A Person B Person C Person D 

Standard Speech 1  0.7  0.9  1 
Standard Gross Motor 1  1  0.5  0.5 
Strd F. Motor Hands 1  0.4  0.7  0 
Standard Sight  1  1  1  0 
No Speech  0  0.3  0.1  0 
No Gross Motor 0  0  0.5  0.5 
No Fine Motor Hands 0  0.6  0.3  1* 
No Sight  0  0  0  1 
↑ Fine Motor Feet 0  0  0  1 
*This becomes 0 before we multiply. 
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We will now present the results of the evaluations of these four hypothetical individuals.  
We will include the ranked ordering for each person as well as the score that each input method 
received as a result of the dot product multiplication. 

 
Person A: 
Standard Keyboard       0.8 
Voice Recognition         0.7 
Stylus Recognition        0.5 
Software Adaptations    0.4 
Switch Input      0.2 
Eye Gaze Recognition  0.03 
Keyguard           0.02 
Sign Language Recognition    0.01 
 
Person B: 
Switch Input   0.62 
Keyguard        0.248 
Stylus Recognition     0.2 
Voice Recognition     0.19 
Eye Gaze Recognition  0.03 
Sign Language Recognition 0.004 
Software Adaptations          -0.02 
Standard Keyboard   -0.16 
 
Person C: 
Voice Recognition     0.98 
Stylus Recognition     0.35 
Standard Keyboard   0.32 
Switch Input   0.315 
Software Adaptations          0.19 
Keyguard        0.134 
Eye Gaze Recognition 0.08 
Sign Language Recognition 0.007 
 
Person D: 
Voice Recognition     1.85 
Switch Input   0.905 
Keyguard        0.7 
Software Adaptations          0.6 
Standard Keyboard   0.5 
Stylus Recognition     0.1 
Sign Language Recognition 0 
Eye Gaze Recognition  -0.95  
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VI. Conclusion:  
 As is evident, the results of the recommender system for the four hypothetical individuals 
presented are not ideal.  As stated, this is due to the fact that the data in our matrix are largely 
speculative.  We are confident, however, that our method for determining the rankings is sound.  
Much of the data required for an accurate matrix does not exist, so it is our hope that this thesis 
may serve as a catalyst for further research in this area.  Once accurate data is available, we 
believe that the framework we have presented for the recommender system can be implemented 
and used widely.   

We have also presented a survey of text input devices and have formulated hypotheses as 
to which input method would be most suited to which population.  We have explored input 
methods that span a wide spectrum, from the standard unmodified keyboard to voice, eye gaze, 
and sign language recognition, and from keyguards and switch input to stylus and handwriting 
detection.  We have documented the advantages and drawbacks of each method investigated and 
have tried to draw connections between methods where appropriate.  Knowledge is power, and 
we hope that this thesis will serve as a foundation of knowledge, comparing text input methods 
to each other and proposing a robust system to recommend devices based on ability. 
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